A Visual Analytics Approach to Debugging Cooperative,
Autonomous Multi-Robot Systems’ Worldviews

Suyun “Sandra” Bae* Federico Rossi'

Joshua Vander Hook*

Scott Davidoff$ Kwan-Liu Mal

«q[University of California, Davis
11§ Jet Propulsion Laboratory, California Institute of Technology

ABSTRACT

Autonomous multi-robot systems, where a team of robots shares
information to perform tasks that are beyond an individual robot’s
abilities, hold great promise for a number of applications, such as
planetary exploration missions. Each robot in a multi-robot system
that uses the shared-world coordination paradigm autonomously
schedules which robot should perform a given task, and when, us-
ing its worldview—the robot’s internal representation of its belief
about both its own state, and other robots’ states. A key problem
for operators is that robots’ worldviews can fall out of sync (often
due to weak communication links), leading to desynchronization of
the robots’ scheduling decisions and inconsistent emergent behavior
(e.g., tasks not performed, or performed by multiple robots). Opera-
tors face the time-consuming and difficult task of making sense of
the robots’ scheduling decisions, detecting de-synchronizations, and
pinpointing the cause by comparing every robot’s worldview. To
address these challenges, we introduce MOSAIC Viewer, a visual
analytics system that helps operators (i) make sense of the robots’
schedules and (ii) detect and conduct a root cause analysis of the
robots’ desynchronized worldviews. Over a year-long partnership
with roboticists at the NASA Jet Propulsion Laboratory, we conduct
a formative study to identify the necessary system design require-
ments and a qualitative evaluation with 12 roboticists. We find that
MOSAIC Viewer is faster- and easier-to-use than the users’ current
approaches, and it allows them to stitch low-level details to formu-
late a high-level understanding of the robots’ schedules and detect
and pinpoint the cause of the desynchronized worldviews.

Keywords: Multi-Robot Systems, Human-Subjects Qualitative
Studies, Debugging.

Index Terms: 1.3.8 [Computer Graphics]: Applications—

1 INTRODUCTION

Autonomous multi-robot systems (MRS) are systems with two or
more autonomous robots (often referred to as agents), that coordinate
and share information so as to perform tasks cooperatively. This
cooperation, in particular, drives interest in their potential to perform
highly complex tasks in diverse contexts from search and rescue
in hazardous environments [4,23,47] to team sports [34,51], and
even space missions [56,62]. The complexity of these systems also
introduces a problem of usability for operations—or operability.
Researchers must monitor the behavior of individual agents as well
as behavior that emerges from their cooperation [32] and see how
small changes to their systems affect the overall system performance.

*e-mail: suybae@ucdavis.edu
fe-mail: federico.rossi@jpl.nasa.gov
fe-mail: hook @jpl.nasa.gov

$e-mail: scott.davidoff@jpl.nasa.gov
fe-mail: klma@ucdavis.edu

One area where this emergent complexity can be particular chal-
lenging for operators is distributed scheduling [52], i.e., coopera-
tively deciding which agent should perform a given task and when.
To track even a single task on a single agent, operators need to under-
stand and track inter-task dependencies the precedence constraints
that the agents’ schedule must satisfy (e.g., scientific data must be
collected before it is analyzed and transmitted to Earth). With dis-
tributed scheduling, the effort required to understand the state of the
system increases quadratically, as tasks assigned to one agent might
be shared with or even performed by others. In addition, the overall
system’s behavior depends not only on each agent’s individual state
but also on each agent’s belief about the state of other agents and of
the environment (i.e., a worldview [30]).

Agents’ worldviews introduce a second challenge that further
complicates tracking agents’ tasks, as worldviews can fall out of
sync (often due to weak communication links). This leads to desyn-
chronization of the agents’ scheduling decisions and inconsistent
emergent behavior (e.g., tasks not performed, or performed by mul-
tiple agents). To debug these inconsistent behaviors, operators must
pinpoint the source of the desynchronization by comparing every
agent’s worldview. This process is not only critical for debugging
and failure detection purposes, but also enormously time-consuming
and difficult: operators need to examine the high-dimensional prod-
uct of every attribute in every agent’s worldview.

While previous research has explored ways to represent the
views of single agents using text [14,22,49] or superimposed over
videos [2,69], we explore how a visual analytics approach [11] can
encode the belief agents have of themselves and about the state of
other agents. To that end, we engaged in a year-long collaboration
with a team of MRS researchers and operators at the NASA Jet
Propulsion Laboratory (NASA JPL). The collaboration began with a
10-week formative investigation to identify the core challenges of
distributed scheduling, utilizing the MOSAIC distributed schedul-
ing framework [75] as a laboratory to explore this objective. This
work was followed by six months of iterative co-design with a core
MOSAIC team member to produce MOSAIC Viewer, a visual ana-
lytics application that helps operators (i) make sense of the agents’
schedules and (ii) detect and conduct a root cause analysis of the
desynchronized worldviews. To compare worldviews, MOSAIC
Viewer draws inspiration from the diff algorithm, which is com-
monly used for text comparison [35] to emphasize the differences
of agents’ worldview. Lastly, we demonstrate the effectiveness of
our method and system with two case studies and evaluate the ap-
plication through a qualitative study with 12 roboticists at JPL. The
study reveals MOSAIC Viewer is easier- and faster-to-use than the
users’ current text-based approaches. The study helps to explain how
applications like MOSAIC Viewer can support worldview desyn-
chronization debugging. In particular, from our evaluation, we find
that our tool supports the following practices:

* System speed and interactivity streamline higher-level analy-
ses;

¢ Trust for summary displays grew with experience;

¢ Knowing how is not enough—users need to know “why” in

Table 1: Attributes in every agent’s worldview. For every attribute, an agent has a value for itself and the presumed values for the other agents.

Worldview Attribute Value

Attribute Self

Others

Data Structure

The robot’s location
The robot’s classification of whether
it is in a science zone

Location
Science Zone

Battery Level The robot’s battery

CPU Utilization The robot’s CPU level

Actions The actions the robot is currently performing
Communication Bandwidth between self and other robots

Presumed location of other robots

Presumed classification of whether

other robots are in science zones

Presumed battery level of other robots

Presumed CPU level of other robots

Actions other robots are believed to be performing
Presumed bandwidths between other pairs of robots ~ Graph

2D Coordinates
Boolean Array

Ordinal Array
Ordinal Array
Event Sequence

order to back trace the root causes of the problem;

* Different sets of assumptions affect data interpretation.

This particular design study [63] helps researchers understand the fit
between the problem of MRS operators debugging desynchronized
worldviews and MOSAIC Viewer. In this paper we contribute: (i)
a set of system design requirements based on a year-long forma-
tive study with domain experts in multi-robot systems; (ii) a visual
analytics tool that helps operators understand and compare agents’
worldviews with a comparison technique inspired from the diff algo-
rithm; and (iii) we characterize how the system supports effective
troubleshooting, with evidence gathered from a study of the system.

2 BACKGROUND

To motivate and situate our work, we first discuss the specific chal-
lenges of supervising autonomous MRS and unpack the details of
the MOSAIC distributed scheduling framework [75] that we use to
explore desynchronized worldview debugging.

2.1 Autonomous Multi-Robot Systems

In contrast to multi-agent systems [46] which are enacted entirely as
software, in this work we focus on multi-robot systems that have to
negotiate with real-world constraints (e.g., limited and time-varying
communication bandwidth and dynamic battery levels) that are often
not considered in the multi-agent systems literature [10, 38,44].

While some MRS researchers investigate MRS that utilize explicit
[65] or centralized [78] coordination, we focus on MRS that use
shared-world coordination [3, 18], which have proven to be highly
popular in field applications [7, 58] due to its simplicity, scalability,
and resiliency. In this approach, every robotic agent has a worldview
[30]—an internal representation of the world and of the other agents’
states—that is updated through constant communication with other
agents. In our case, Table 1 summarizes the different attributes found
in an agent’s worldview within the MOSAIC framework (described
in Sect. 2.2). Based on its own worldview, each agent independently
computes the optimal strategy for all agents, and then executes its
own part of the computed strategy. If all agents have the same
worldview, this results in coordinated behavior.

While a shared-world approach introduces many benefits, a key
complexity it introduces is that, if the agents are unable to com-
municate with each other, their worldviews can fall out of sync,
resulting in uncoordinated decisions (e.g., a task may be performed
by two agents, or it may not be performed at all). This issue is
especially problematic in harsh environments such as underground
caves [17,42], where ensuring constant reliable communication is
infeasible. Therefore, in order to understand the overall behavior
of MRS, it is critical to understand the worldview of each agent.
Furthermore, in order to mitigate the effect of worldview desyn-
chronization, an operator must be able to identify the cause (e.g.,
slow propagation of information on low-bandwidth data links or
the failure of an agent’s radio) to plan for corrective action. The
concurrent, distributed, and complex components of MRS makes
the debugging process significantly difficult, and previous research
has identified that these tasks require considerable attention [25] and
would benefit from more appropriate, effective tools [73].

2.2 MOSAIC Distributed Scheduling

Within the MOSAIC distributed scheduling framework, each agent
can perform a set of navigation tasks and science tasks. Navigation
tasks, which model activities such as localization and path planning,
are mandatory, and all agents must perform them. Science tasks,
which model collection and analysis of scientific observables, are
optional. Though individual science tasks are not required for mis-
sion success, the objective of the MOSAIC framework is to perform
as many science tasks as possible. However, an agent can perform
science tasks only if it has the time and energy resources to also
guarantee the execution of the mandatory navigation tasks.

Both navigation tasks and science tasks have precedence con-
straints, enforcing that tasks must be accomplished in sequence.
With science tasks, performing analysis of scientific measurements
requires that the data be collected first. With navigation tasks, per-
forming localization through visual odometry requires collecting
camera images first. Hence, we will refer to navigation tasks and
science tasks as a “chain of tasks” (i.e., several tasks with a chain
of inter-task dependencies). A key advantage of MRS is that agents
do not need to accomplish each task all by themselves—they may
receive assistance from other agents. An agent in a science zone
may request assistance with its navigation tasks in order to free up
computational resources for science tasks. Certain computational
tasks, such as performing visual odometry and analyzing data, are
relocatable to other agents. However, not all tasks are relocatable—
for instance, tasks requiring the use of an agent’s hardware resources
(e.g., capturing images or collecting scientific measurements) are
not. The MOSAIC scheduler takes all these constraints into ac-
count and computes (i) what optional tasks can be performed and (ii)
which agents should perform relocatable tasks based on the agents’
capabilities and communication links between the agents [75].

In this paper, we consider datasets with ten agents generated
by running the MOSAIC scheduler in the loop with a multi-robot
simulator that captures the availability of science zones, robot bat-
tery levels, and communication link bandwidths, which reflects the
standard practice in robotics research [53, 74, 75]. This level of
simulation fidelity is well-matched with the level of abstraction at
which MOSAIC operates; while field testing may present different
underlying causes for worldview desynchronization, the effect on
the data used in this paper (i.e., disagreement between the agents’
world views) would be indistinguishable from the output of the sim-
ulations. Accordingly, the use of a simulator has a negligible impact
on the fidelity of worldview debugging. In these datasets, each agent
has six attributes in its worldview (Table 1) and is endowed with an
agent ID. Each agent wishes to perform three mandatory navigation
tasks; agents in “science zones” also wish to perform three optional
science tasks. Each set of tasks has a chain of dependency con-
straints. One agent—the base station—is a special agent that does
not need to perform the navigation or science tasks and is equipped
with a faster processor. Its purpose is to help the other agents with
its computing capabilities. Lastly, we remark that the scale of ten
agents is representative of proposed extra-planetary (i.e., outside
of Earth) MRS mission concepts under consideration for the next
decade [8,39,40,56].

Table 2: Summary of the participants’ background, current tools and the extent they participated in the year-long formative study.

Current Tools Participation

Participant MOSAIC Years of Full-Time
articipants Affiliation Professional Experience PLT! RT?> CLP DBT* DB-LT’ FS® Co-Design FE’ User Study
PO Core 1 -5 years v v v - - v v v -
Pl Core 1 -5 years - v - - - v - - v
P2 Core Less than 1 year - - - - v - - - v
P3 Non-Core 5 - 10 years v - - - - v - - v
P4 Non-Core Less than 1 year v - v - - - - - v
P5 Core 10 - 15 years - - v - - v - v v
P6 Non-Core 1 -5 years v v - - - v - - v
P7 Non-Core 1 -5 years - v v v - - - - v
P8 Core 1 -5 years v - v - - v - - v
P9 Non-Core 1 -5 years - v - - - - - - v
P10 Non-Core More than 15 years - v v - - - - - v
P11 Non-Core 1 -5 years - v - - - - - - v
P12 Core 10 — 15 years - - v - - v - v v

! MATLAB/Matplotlib (ad-hoc scriping languages and plotting tools);
4 Command-line debugging and backtracing tools (GDB);

3 RELATED WORK

We present MRS supervision tools used in the robotics community
and promising visualization techniques for worldview debugging.

3.1 Scheduling and Timeline Views in Robotics

In addition to the various multi-purpose robotics toolkits [55], spe-
cialized visual analytics tools have been developed to track robots’
task completion [49, 68, 70]. These tools include timeline views
that are often organized around two underlying data types. First, we
observe “agent-centric”’ (AC) timelines [12,36], which map time-
line rows to individual agents, foregrounding the tasks performed
by each agent (either for themselves or to assist other agents). In
contrast, the second approach, “task-centric” (TC) [59], organizes
timeline rows around tasks and their dependencies and focuses on
when tasks are completed, rather than who is executing them.

We find AC timelines to be an incomplete solution for the prob-
lem of distributed scheduling, where tasks offloaded to other agents
can be difficult to trace. We find a similar limitation with TC time-
lines for distributed scheduling problems, where backtracing tasks
with dependencies can be difficult to explain failures. To that end,
MOSAIC Viewer uses an AC-TC hybrid timeline. The timeline
includes glyphs that visually encapsulate the completion status of
individual tasks, and foregrounds task dependencies using interac-
tions [21,37,77] (see Sect. 5.3 for more details about the timeline).
Even with these adaptations, the timeline view is necessary but
not sufficient to support the many tasks robotics researchers and
operators face when debugging unexpected behaviors due to world-
view desynchronization. To complete the application, we turn our
attention to views designed to support worldview debugging.

3.2 Worldview Debugging

To mitigate the effect of worldview desynchronization, an operator
must be able to identify the root cause of the desynchronization
condition (Sect. 2.1). Researchers have investigated methods that
display worldview state variables using structured text, through
logfile analysis [22] and watchpoints [14], similar to those found
in software development IDE’s. These initial explorations provide
utility, but at the same time require considerable attention and focus
[54,72]. One objective of our research is to explore a more expressive
and lower cognitive load approach for users to examine the high-
dimensional product of agents’ worldviews. Visual tracking [2, 69],
which overlays line graphs [2] and glyphs [69] that describe the
agent’s state on top of a video of agents performing tasks, is another
approach. While this approach can effectively show the state of
individual agents, MRS worldview debugging requires operators to
understand agents’ beliefs about other agents’ states as well.

To the best of our knowledge, we know of no research within
the visualization community that has explicitly looked at the prob-
lem domain of distributed MRS worldview debugging. However,
researchers have explored various representations and interaction

2 RVIZ and ROS-based plotting tools [55];
5 Database-backed logging tools;

3 Command-line (CLI) logging tools;

6 Formative Study; 7 Formative Evaluation

strategies for data with similar underlying representations. For ex-
ample, as worldviews have multiple attributes, we build on visual
comparison techniques rooted in multivariate data research [43]. In
particular, we rely on visual comparison techniques [26] that include
explicit encoding to represent the system’s consensus of an agent’s
view of its own state, and juxtaposition to highlight the differences
among worldviews. The same strategies to compare parameters
of a dataset have been applied across a number of domains, from
malware sampling [27] to time series data [50].

Another thread that defines analytics tools that perform multi-
variate comparisons is the actual algorithm they select to highlight
parameter differences. DiffMatrix [66], for example, highlights the
difference between two parameter values using the arithmetic sub-
traction operators, while OnSet [60] uses the union and intersection
set operators. Our work, like Vdiff [6] and TACO [50], applies the
diff algorithm [35] from text processing (see Sect. 5.2 for details).
The system we present, overall, extends the work on multivariate
comparison into the domain of distributed MRS worldview debug-
ging and contributes a detailed analysis of the fit of our approach to
that domain. We now turn our attention to the formative research
that informed our understanding of the problem.

4 FORMATIVE STUDY

MOSAIC Viewer is the product of a year-long engagement, orga-
nized around three distinct phases, with its users. Table 2 summa-
rizes the phases of the engagement and describes how each of the 13
participants engaged with this project. (Note: PO is a superuser who
guided the design process, but did not participate in the user study).

This section describes the first and second phase: a 10-week
formative study with 7 domain experts and a 6-month co-design
study with 1 domain expert. The third phase (Sect. 6.1) is a formal
user study that evaluates how well MOSAIC Viewer supports visual
debugging for worldview desynchronization.

4.1 Approach

The objectives of the first phase, a formative study, was to gain a
deeper understanding of the core challenges of distributed scheduling
and the users’ needs. The study was organized around an initial con-
textual inquiry [33], which allowed the research team to observe the
roboticists at work in their own environments. For four weeks, the
protocol consisted of six sessions of 90 minutes of semi-structured
interviews and an artifact walk-through where roboticists shared
the tools and processes that define their MRS work practice. The
research team took notes, and captured images and video recordings
to highlight observations for post-analysis.

With a preliminary understanding of the problem domain, the
research team then elaborated 12 paper prototypes [57] in order to
test initial ideas early and quickly. After four rounds of user testing
with all users, these prototypes evolved to higher-fidelity code-based
prototypes with real MRS data. From these prototyping sessions, we

31331334339339933931933333333333333399 ST
KRR AKKMRKRKAKER KKK KRRKRRKKRRRRE o MRS IS 3T s
IS99 3333333 333300 e 3339w iy A AAKEAAISORNKER} 11117]1]] KEAAAKE AR ARSARKCAARANAARKR 333155311
AR AR AAKKRKERKEA KR RAXRRKIS133) 3953 RAMRKRAKKLIORMMMIRR) 3111115331131 30 nnmmmmmmnunmmmsmummmmnm
F3391335335335393333393339311339339339339339133 139

Ferrre]
Ak AKRKRKRKRKKREER KKK KR RRKRKRKER KKK AR eSS
I TN MMM Ly AT AL AL I DI S I Aa1 1 s
AR X KRR KRR et

SRR
1133330 PSSRl 3110311133 ML S St KRSRAMRCIST ST S 33
i db o000 IAIAIAIAIARRRRESTTSFF113111111999913311) g 3331 11013311 Moy 033 113 535331 103331 b
353933193t oavnecs D331 11 kkoasoasecoa 11313131111 Mokkas: o s s s
MMM KRR 333 11119131313 sdsssasaaianiy3333333) B SIS 33)
1111139393939 133333 Ao [s (015 P8 s s
S T R i wvererereermererreerer
3 A ARt 30 rﬂ&"’"“"’"’m T
il
e

Lk kKRR IR
SENIIIIIISIIS0SS) Scomping temacain. 1351113333131 533 AR AR A AR AR
A3 53153433

PR
113339911131 13133 I

SRR . L
" R T e -:w -
eI toery s i
/1,
- * 513933 Paidsaiiinsa§ 1139331319333 oo
AR ‘.—m.' i Pt smssmnnmml”mj’"
sl S T e WO
ton s
[l 1311199 MAMLALAAMAAAIS1333] o1 error 1)
i S e oy i e et . s
T e e g = s
e .
- T e, e
R o
Ly bt (g e
T Tt

33333433393 13393399

ke 13333333311 1333
P, T

3133391333133313333 AKKIRKIGAK (rospy.internal | [1aw0) 23 ri57130,8551 topkcl/iom b
e 95311 Logecom. cham) reacving cornection 18 hEtp//riden Lol

iii)huwnﬂntnmmmmmm
Flgure 1: A 50-inch and a 70-inch display. The 15 terminal wmdows
allows P1 and 2 other researchers (not pictured) to debug 3 robots.

 oxpy.internal i rion brl
py. ks ‘”'"" = o itpeirtoms Local 134

identified that comparing agents’ worldviews is a core component
we needed to address in order to help roboticists make sense of
the agents’ schedules. Then in the second phase, we engaged in 6
months of detailed co-design sessions [29] with PO to unpack the
specific challenges of worldview comparisons. We found that no
existing visualizations met the needs of the problem, and we collabo-
rated with PO to iteratively prototype different visual representations
that compare agents’ worldviews. The past designs can be found
in the supplementary material. After identifying a potential design,
we conducted a formative evaluation [16] with three roboticists,
where we revised the system design based on their feedback, such
as introducing the hierarchical interactions that we list in Sect. 5.3.

4.2 Findings

The materials captured during phase 1 were annotated with themes,
which were then grouped using an emergent theme analysis [1].

One key analysis takeaway reveals roboticists invested substantial
amounts of effort and time to track the state of each agent’s world-
view in order to interpret which tasks are scheduled for which robot.
To illustrate, we observed examples where roboticists would need
to open 3 or 4 terminal windows of messaging logs per agent and
then would recruit multiple expert colleagues who would each be
tasked to monitor a single agent on their own screens (Fig. 1). To
elaborate a shared understanding of all the worldviews, including
the divergences, the roboticists would collectively, as P1 shares,
“shout out the state of what they’re seeing” as they visually scan their
respective displays to find relevant information.

Roboticists must first assess worldview synchronization as this
dictates the flow for the rest of their analysis. If roboticists conclude
that the worldviews are synchronized, they would then assess the
system’s performance (i.e., how many tasks are being performed,
and by whom). To perform this objective, we observed researchers
first engaged in a TC perspective to quickly determine the state of
the agent’s task: they did not seek the low-level details of how a task
has been accomplished. Conversely, if an agent failed, researchers
switched to an AC perspective to seek for the low-level details of an
agent’s activities that explained the failure. However, if roboticists
concluded that agents” worldviews are desynchronized, they would
transition into a debugging mode to plan for corrective action (i.e.,
determine who is out of sync and reason why the desynchronization
occurred). Roboticists would read out single states within each of
their robots’ worldviews again and check for agreement about each
state before moving onto the next worldview.

Table 3: Researcher’s goals and subgoals.
Goal Subgoal

Assess worldview
synchronization

1. If desynchronized, who is out of sync with whom?
2. What is the cause of the desynchronization?

1. Who is doing what?
2. Are agents accomplishing their navigation tasks?
3. Are agents maximizing their science tasks?

Make sense of the
scheduler’s output

4.3 Design Requirements

Phase 1 identified that worldview debugging requires considerable
cognitive effort, supporting our decision to investigate how a visual
analytics tool can support these sets of tasks. In phase 2, over months
of iterative co-design with PO, we elaborated on the specific chal-
lenges researchers face when debugging MRS systems (summarized
in Table 3). We use these questions to devise a set of requirements
on how a visual analytics system can provide the needed support:

R1. Display worldview synchronization state: Determining if
the worldviews are in sync is the first step to an in-depth
analysis. The system’s visual encoding should indicate whether
agents are in sync and highlight those who are not.

R2. Support system performance assessment: System perfor-
mance is based on the number of accomplished tasks. With n
agents, the number of tasks and task transferring can be high.
To track who is doing what, the system should (i) differen-
tiate the different tasks agents can perform and (ii) offer the
flexibility to switch analytical perspectives (i.e., AC, TC).

R3. Show the differences and similarities of the worldviews:
When worldview desynchronization occurs (R1), researchers
will need to detect who is out of sync in order to plan for
corrective action. Detecting out of sync agents requires under-
standing the similarities and differences of all the worldviews.

R4. Help conduct a root cause analysis of the desynchronized
worldviews: After determining which agents are out of sync
(R3), operators will need to conduct a root cause analysis to
reason on why this desynchronization occurred and plan for
corrective action. The system should provide the ability for
users to collate and fuse pieces of information in order to
properly diagnose the desynchronization condition.

5 APPLICATION

To support analyzing and debugging MRS, we design a system
composed of two components: Main View (Fig. 2) and Differential
Worldview Comparison (DWC) (Fig. 4). The two components are
laid side-by-side, and users can first use the Main View to assess
whether agents’ worldviews are synchronized. If they conclude
worldviews are synchronized, they can proceed to assess the system
performance with the various views displayed in the Main View.
Otherwise, users can use DWC to identitfy worldview differences.
After identifying and selecting misbehaving agents in DWC, users
can engage with the Main View to conduct a root cause analysis.

5.1 Main View

The Main View (Fig. 2) consists of a summary overview, scatterplot,
graph, task abstraction, and a timeline.

Summary Overview. The summary overview (Fig. 2a) provides
a quick assessment of agents’ performance of science tasks and
worldview synchronization (R1, R2). As navigation tasks are re-
quired, the operator can infer how well the MOSAIC scheduler is
performing by assessing the number of optional science tasks that
agents can accomplish. Thus, for each task in the chain of science
tasks, we display how many agents have executed the respective task
as a fraction of all eligible agents. In Fig. 2a, 2 out of 4 agents have
accomplished the first two science tasks. Of the two, only one has
accomplished the third science task (either on board or by delegating

MOSAIC VIEWER
®

®
© |
® 00 "= == [ETRNE B (N 0|
oo |m m m o o Tosk e S oz s e
02 |m m m [B End Time: 26 ‘ =
03 HE B E| A A A A A A | puration: 9 J B
e04 | I I] [| A A [BEE|
05 LI I [A A B B
®06 E == [ol A IEEVAN B}
e07 LI] o B8] N B A
®o08 [I B = B 8]
®sT B 2 A A

Figure 2: The operator is using the Main View to evaluate the system’s performance. (a) Summary overview shows state of the science objective
and the worldview synchronization (b) Scatterplot abstracts the “behavior” of agents with the x- and y-axis encoding average CPU load and battery
level, respectively. (c) Graph depicts the agents’ location and communication links (d) Task Abstraction provides a task-centric perspective of each
agent’s task. Squares represent navigation tasks. Triangles represent science tasks (e) Timeline shows agents’ activities. Agent 5’s science chain
of task is highlighted in pink. (Note: other agents’ timelines are highlighted in different colors for illustrative purposes for the case study in Sect. 6.3)

it). Below, Worldview Synchronization provides an overview of the
agents’ worldview synchronization. To help users determine world-
view synchronization, if the system detects a desynchronization, it
outputs a warning (R1). Users can then turn to DWC for further
analysis. To show what is desynchronized, the Worldview Synchro-
nization displays DWC'’s visual representation for three worldview
attributes (‘CN’: Communication Network, ‘BT’: Battery Level, and
‘SZ’: Science Zone). We discuss this further in Sect. 5.2.
Scatterplot. The scatterplot (Fig. 2b) is broken into four quad-
rants and the x- and y-axis shows average CPU load and battery
level, respectively. The quadrants are colored with four different
categorical colors to help operators abstract agents’ behavior at-a-
glance with respect to the current time step (R2). CPU load, in
particular, shows how busy a given agent is. This information in
addition to battery level provides two indications: (1) it identifies
over-subscribed agents and “bottlenecks”; (2) it identifies agents
that are doing the majority of the work for the overall system. For
example, agents in the blue quadrant are considered “lazy”. With a
high battery level and low average CPU load, this suggests that these
agents could be given more tasks if the communication topology
allowed for it. In contrast, agents in the yellow quadrant have a low
battery level and high average CPU load-indicating they are “over-
worked”. The middle portion of the scatterplot is colored grey, with
the center colored black, in order to emphasize extreme behavior.
Graph. In the graph (Fig. 2c), each agent is represented as a
circle with their agent number in the center. The base station is
denoted as ‘ST’. The colored ring correlates to which quadrant an
agent is positioned in the scatterplot. The edges between agents
represent its communication links, and the edge weight encodes the
available communication bandwidth. The graph has two regions to
represent the agent’s physical environment. Solid dark grey filled-in
regions are the ‘science zones’, while the diagonal hashed regions
represent ‘communication cut-off zones’. Communication links that
cross a communication cut-off zone are severed, simulating the effect
of line-of-sight of obstructions (e.g., hills). The graph provides basic
interactions to zoom-in, pan, and see details on-demand (i.e., tooltip)

when hovering over the nodes or edges. Users can also click on an
agent and see its immediate edges in pink, while the opacity of the
other edges in the network is lowered.

Task Abstraction and Timeline. In the Task Abstraction
(Fig. 2d), each row represents an agent, and a colored circle next to
the agent name corresponds to the quadrant the agent is respectively
placed in the scatterplot. To help distinguish tasks, there are two sets
of shapes, where squares represent navigation tasks and triangles
represent science tasks (R2). Each chain of tasks is composed of
three steps, and for every agent, the respective shape is filled in if
the task has been accomplished. This allows operators to quickly
assess if agents have accomplished their navigation tasks, and how
many science tasks have been performed from a TC perspective
(R2). However, this task abstraction does not tell which agent has
completed the task or when it has been accomplished. To that end,
operators can use the timeline, which shows each individual agent’s
activity (Fig. 2e) as horizontal bars in seconds. The length of a bar
represents the duration of a task and the positioning maps when
a task has started and ended. The shape at the beginning of each
task represents the task type (navigation or science), and inside each
shape is either a number that represents the nth-step of its respective
chain of tasks or an asterisk symbol (*) to denote task relocation. At
first sight, it is not evidently clear if a task in an agent’s timeline may
have been relocated from another agent for assistance (e.g., Agent 0
is performing Agent 4’s second navigation task at z = 17). To help
provide a closer inspection, users can brush the range on the timeline
with a mini-timeline or see more details of a task with a tooltip. The
tooltip displays the name, the start and end time of the task, and who
the task belongs to. More interactions are listed in Sect. 5.3.

5.2 Differential WorldView Comparison

Differential Worldview Comparison (DWC) enacts the concept of
the diff algorithm for text comparison [35] to compare the agents’
worldviews. For each line in two text files, the diff algorithm either
generates nothing, where the two lines are the same, or shows a side-
by-side comparison of the two lines, where they differ. Analogously,

Matrix X @ Difference Matrix Y
j=n i=1j=2
=1 i=1 o« State 3

i=2 «—State 1

State 2
Diff Function :
_ |

State 3

i=n

Matrix X with color mapped

values for battery level (ordinal) W State 1: T (Ego View)

[] State2:SameValuesas Tj;

—
2 3 a4

[State 3: Different Values as X34

@ Differential WorldView Comparison

]

Detail View

State Occurence Deltas

Computation

Delta Line

ooono

e
e

Summary View

Difference View
Similarity View

Ego View

Agent Number
Number of Similarity

TN

Figure 3: The process from the raw data to DWC. This figure focuses on Agent 2’s battery level (Fig. 4). (a) The agents’ view of a single attribute is
represented as X, a nxn matrix. After applying our variant of the diff function to X, we obtain the Difference Matrix Y (b) where each entry is
categorized as either State 1, 2, or 3. We compute the number of occurrences for each state. (c) The information is transformed into DWC.

WORLDVIEW COMPARISON

= = =

Delta /

Line = | || | | || = || || |

@ 00

06
07
08
ST

Summary
V\eW -n -o. L L} L]

Figure 4: Differential Worldview Comparison: (BT) Battery Level Panel, (SZ) Science Zone Panel, and (CN) Communication Network Panel.

for each attribute in the agents’ worldviews, we introduce a variant
of the diff function that compares each agent’s presumed value for
an agent’s attribute (e.g., agent B’s presumed value for agent A’s
location) with the ego value of the said attribute (i.e., the value the
respective agent has determined for itself. See Table 1). We compare
to an agent’s ego value because we follow the strong assumption that
every agent knows its state the best. Hence, the agents’ ego value for
each attribute acts as a form of comparison. If an agent’s presumed
value corresponds to the respective ego value, DWC shows nothing;
however, if they differ, DWC shows the presumed value. Fig. 3
provides a walk-through of the process from the raw data to DWC.
Of the six attributes listed in Table 1, we focus on the three
attributes (battery level, presence in a science zone, and communica-
tion network bandwidths) that have a direct impact on the agents’
scheduling decisions and are able to explain the majority of the
desynchronization scenarios. For each agent 7, each individual world-
view attribute (e.g., battery level) can be represented as a 1D-array
x; with n entries, where n represents the total number of agents
(Fig. 3a). The j-th entry in the array, x;; represents agent i’s belief
about the state of agent j’s attribute. For battery level, the entry is
an integer; for science zone, it is a boolean; and for communications,
the entry is a list of bandwidths from agent j to all other agents.
Once all n arrays are concatenated, this becomes an 7 xn matrix
X. In X, row i represents agent i’s beliefs about the attribute, and

the entry x;; represents agent i’s belief about the state of agent j’s
attribute value. The value x;; is denoted as as the ego value for the
attribute, as this entry represents what agent i thinks about itself. For
example, the highlighted column in Fig. 3a represents every agent’s
belief about the state of Agent 2’s battery level (encoded by color),
and x, represents Agent 2’s ego value for its battery level.

After compiling X for each attribute, we apply our variant of the
diff function to every column j in X, comparing every entry (x;;) to
the ego value:

None, ifx,-,- = Xij

()]

Xijs otherwise

diff(x,-hx,-j) = {
If x;; = x;j, the function does not return anything; otherwise the
value is x;; (i.e., agent i’s presumed value for agent j). Once we
compute the diff function for every column, the output values are
used to create the Difference Matrix Y (Fig. 3b). In Y, each entry
is categorized as one of three states: State 1, State 2, or State 3.
State 1 is the ego view (y;;), (i) State 2 are entries (y;; = None)
that agree with the ego view, and (iii) State 3 are those (y;; # None)
that disagree with the ego view. Then, for every column jin Y, we
compute the Similarity and Difference Sum to count the number of

entries labeled as State 2 and State 3, respectively:
n

Similarity Sum =)" [y;; = State 2] ,
=1

(@)

n

Difference Sum = Z [yij = State 3] . 3)
i=1

‘We now have all the information we need to create DWC.

DWC displays each attribute as a grid-like panel (Fig. 4). Every
panel has n adjacent columns, each representing beliefs about an
agent. Each column j is composed of the same four components that
make up DWC: Ego View, Similarity View, Difference View, and
Deltas. Every panel also contains a ‘Delta Line’. Below the Delta
Line, the bottom portion of every panel is the ‘Summary View’ that
summarizes the system’s synchronization state, and the bottom-most
component is the ‘Ego View’, which visualizes an agent’s ego value.

The visual representation of the ego value is specific to each
attribute. For Communication Network, the ego view of each agent’s
communication network (i.e., the bandwidths from the agent to all
other agents) is represented as a 1D-array of length n. The k-th entry
in the array represents the communication bandwidth value from
agent j to agent k; we encode the bandwidth value with a purple-
to-red sequential colormap [31]. In contrast, the data types used
in the Battery Level Panel and Science Zone Panel are ordinal and
boolean, respectively; for these, we use a square mark to represent
the Ego View. Ordinal values are encoded with an orange sequential
colormap, and boolean values are encoded with two shades of teal.

Next, above the Ego View, the ‘Similarity View’ displays the
similarities of each agent’s worldview through a piling metaphor [5]
where the number of horizontal lines represents the Similarity Sum
(Equation 2). This information is also captured as a fraction below
the Ego View. The piling metaphor fits the need of the visualization
as it visually aggregates information—reducing visual noises and
allowing more emphasis on the differences. This visual design deci-
sion is also based on what we have learned from the formative study,
as researchers are more interested in identifying the differences of
agents’ worldviews rather than the similarities.

The next component of DWC is the ‘Difference View’, which is
adjacent to the Similarity View. The Difference View is represented
by diagonal hashed lines, and it complements the Similarity View.
From the Difference Sum (Equation 3), the height of the Difference
View indicates how many agents disagree with an agent’s ego value
(R1). To see who the contrarians are and their beliefs, we look at
the top portion of DWC: the Detail View (R1, R3). Above the Delta
Line, the Detail View has n rows representing the n agents. For each
column j, rows corresponding to an agent that disagrees with the
column’s ego view (i.e., rows corresponding to an entry in State 3
in Y) report the contrarian agent’s belief about agent j’s worldview.
For example, in Fig. 4 (BT), Agent 7 disagrees with Agent 1 and 4’s
ego view of their location. The Detail View displays a different color
compared to the respective Ego View’s at the bottom. By default,
rows corresponding to agents that agree with the Ego View are blank,
in line with the diff metaphor. However, users can also show values
that correspond to the Ego View by toggling the Similarity View.

Our decision to focus on representing the agents’ view of each
attribute as a single matrix is based on the lessons from past designs
from the co-design sessions. The past designs layered various visual
encoding for each attribute, and users found it difficult to make sense
of the layered result and to compare the differences between the
agent’s worldviews. In addition, we found that operators would focus
on a particular attribute depending on the context of the problem.

5.3 User Interactions

The prototype features a rich set of user interactions:
Highlighting. To support switching analytical perspectives (TC,
AC) when making sense of an agent’s schedule, users can highlight
a single task or highlight an agent’s chain of tasks (R2). In Fig. 2,
the user highlighted Agent 5°s science chain of tasks. Users can also
highlight rows in the Detail View in the DWC as shown in Fig. 4.
Interlink Views. Visualizations for MRS can be broken down
into two aspects: (i) the behavior of a single agent or (ii) the overall

behavior of the system [61]. No single tool is capable of providing a
complete picture of the system [49]. Hence, we focus on providing
the operator with the ability to collate and fuse pieces of information
in order to properly diagnose the system by interlinking the views
(R4). For instance, when the rows in the Communication Network
panel are highlighted, the immediate edges of the highlighted agents
are pink in the graph, while the opacity of the other edges are
lowered. Fig. 8 showcase this interaction. As another example,
the graph, scatterplot, and task abstraction are interlinked. When
an agent is selected in any of these views, it is simultaneously
highlighted in the other views.

5.4 System Architecture & Implementation

‘We use a MongoDB database to store each agent’s reported world-
view. From the database, we perform three computational tasks
before visualizing the system: (i) compute summary statistics; (ii)
chain tasks according to their precedence constraints and inter-task
dependencies; (iii) compare agents’ worldview through the diff func-
tion (Sect. 5.2). Afterward, we visualize the results on a web applica-
tion. The front-end is implemented with a combination of HTMLS,
CSS, JavaScript, and the JavaScript Data-Driven Documents (D3)
library [9]. The back-end runs on a Node.js web server.

6 SYSTEM EVALUATION

We are interested in evaluating if MOSAIC Viewer can help opera-
tors successfully answer the critical questions listed in Table 3. We
perform two assessments. First, we conduct a qualitative study that
consists of a training task scenario and three task scenarios in which
data were collected. For each scenario, participants were asked to
explore the state of a multi-robot system. Then, based on the user
study, we present two case studies that demonstrate our system’s
efficacy and the workflow of how users interacted with the system.

6.1 User Study

Participants. We recruited 12 participants (3 female, 9 male), aged
reported in bins 18 - 44 years, from the population of multi-robot sys-
tems researchers and operators at NASA JPL. Of the 12 participants,
two were part of the formative evaluation. We elected to include
these participants in the study as the system’s interactions and visual
representations changed after formative evaluation, and the study
was designed to assess their ability to debug worldviews based on
scenarios they did not encounter in the past. A more comprehensive
overview of the participants can be found in Table 2.

Conditions and Tasks Design. To study the usability and out-
comes of domain experts using MOSAIC Viewer, we devised three
scenarios, each touching upon a common situation operators face.
One scenario included all agents in sync. Two scenarios included an
“out of sync” condition that emerges from (i) one agent isolated from
others or (ii) a bipartition in the agents’ communication network,
respectively. For each scenario, we asked operators to assess the
system. If they determined worldviews are out of sync, we asked
operators to perform a root cause analysis. This involved determin-
ing which robots were out of sync and analyzing why they were out
of sync (Q1). Participants were also asked to assess whether agents
accomplished their science tasks (Q2), navigation tasks (Q3) as well
as whether they understood how tasks were scheduled (Q4). Each
participant was required to complete the three scenarios, and the
study was counterbalanced to mitigate learning effects. We chose
not to have a baseline interface to compare with MOSAIC Viewer
instead of using existing debugging tools for two reasons: (1) reduce
confounding effects that may emerge from other aspects of the inter-
faces and (2) focus the investigation on the qualitative, behavioral
aspects participants gained from MOSAIC Viewer.

Experimental Setup. MOSAIC Viewer ran on a mid-2017 Mac-
Book Pro (16 GB, 2.5 GhZ process). The interface was displayed on
a 34-inch display (3440 x 1440 pixels), using the Google Chrome

S1. “MOSAIC Viewer is informative in presenting the data” S1

S2. “MOSAIC Viewer is easier and faster to use than 52
my current approach”

S3. “lam likely to use a tool like MOSAIC Viewer when 3
analyzingg multi-robot system in day-to-day T2 3T s
work/studies” strongly disagree strongly agree

Figure 5: Participant’s feedback about MOSAIC Viewer on a 5-point

Likert Scale. Median ratings are indicated in gray.

mnl

browser. Participant input was captured through an external key-
board and mouse. For the sake of uniformity, pen and paper were
provided to participants regardless of the task.

Procedure. Each participant first filled in their background infor-
mation in a survey form. They were then trained on the interface
until they were comfortable using it. Once ready, we provided the
three scenarios one by one. For each scenario, the participants were
asked to answer the four aforementioned questions and write down
their answers on the provided sheet of paper. At the end of each task,
participants responded to a questionnaire about the confidence of
their answers. After finishing all three tasks, participants answered
additional survey questions that prompted their overall thoughts
about the system and engaged in a semi-structured exit interview.
We used a concurrent think-aloud protocol during the study, and
participants were audio- and screen-recorded for the duration of the
tasks. All of the participant’s answers for the tasks were saved.

6.2 Results

Our evaluation revealed the following findings:

* Speed and interactivity streamline higher-level analyses:
(1) MOSAIC Viewer helps users locate information faster; (2)
The interlinked views enable users to formulate a hypothesis
about the root cause of the desynchronized worldviews.

e Trust for summary displays grew with experience: Users
initially lacked trust in the visual representations to which they
were not accustomed, but this trust grew quickly once they
were able to verify their understanding.

* The why: The how is not enough on its own: Understanding
MRS agents requires not only understanding how agents are
interacting with each other and how the tasks are scheduled
but also why. One without the other is not complete.
Different sets of assumptions affect data interpretation:
Users bring in a different set of assumptions that mismatches
from the system’s architecture. These mismatches led to incor-
rect data interpretation.

P6 explains that MOSAIC Viewer meets an unmet need with existing
tools, noting “Every time I build a new capability...There are no tools
out of the box that just does it for you. You have to go spend time
and build it, so you can properly visualize what our algorithms do.”

6.2.1 Speed and interactivity streamline analyses

Navigating information. All 12 users reported that understanding
the Main View’s visual encoding required very low to low-level of
effort. P7 attributes the high learnability due to the fact “someone
actually thought about how to represent these data rather than [users]
just plotting the data in a given software”. In particular, participants
reported the graph and shapes to be intuitive and useful.

8 out of 12 participants helped explain this finding, sharing that
their current workflows required them to open multiple terminal win-
dows per agent, often spreading across multiple monitors to unpack
what even a single agent is doing. This matches the finding from the
formative study. Even when working alone, participants describe
terminal logs as time-consuming and inefficient, especially for com-
parisons. P1 explains this workflow requires visually scanning and
remembering the contents—making it mentally taxing. P2 contrasts
this multi-screen collaboration experience with MOSAIC Viewer’s

[
mimmiml | | | Ew
L | []|

®n o8 ©n

Figure 6: Toggle interaction used in the DWC. (a) show the default
setting, only showing the deltas in the Detail View. (b) shows when
P4 toggles the Similarity View and the agents that agree with Agent
1’s ego view of its battery level appears in the Detail View. (c) shows
when P4 toggles the Difference View and makes the deltas disappear.

compact form, observing that “[in MOSAIC Viewer] whatever I
want to see, the information is there.”

Users contrasted MOSAIC Viewer with terminal logs, which
require considerable work from users to find individual pieces of
information, let alone combine them into a higher-level analysis.
P1 comments, “that isn’t possible with the way I [currently] do it”.
Based on the feedback users provided on a 5-point Likert scale, par-
ticipants describe MOSAIC Viewer as both easier- and faster-to-use
than their current approaches (Md = 5, IQR =0, 1) (Fig. 5). Oth-
ers found the flexibility helped drive ease-of-use, with P2 observing
“you have more than one way to see [the same] information”.

Formulating. Previous research explains that debugging a dis-
tributed multi-robot system requires users to combine macro- (i.e.,
societal-level) and micro-level (i.e., agent-level) system state infor-
mation to form a coherent, unified picture [49]. In our study, users
explain that the speed of specific data access enables them to more
quickly achieve these higher levels of understanding. To complete
each task, users would use the DWC to identify if an agent is out of
sync with the other agents. To explain a de-synchronization, users
would have to combine their domain knowledge and the information
provided from each of the various views to conduct a root cause
analysis (R4). Users would look at each view to determine if the
agent’s location, distance, communication bandwidth, or any other
variables could explain the desynchronization they determined in
DWC. In Sect. 6.3, we provide a walk-through of how users utilized
our system with two case studies.

6.2.2 Trust for summary displays grew with experience

Independent of which task was presented first, users first interacted
with the system in a way that indicated they were verifying the
low-level details in which the summary displays were based upon.
The DWC Summary View provides a good example of this ob-
served user behavior. The default setting of DWC shows only the
differences in the Detail View, but users can toggle different parts
of the Summary View to see different low-level details (Fig. 6). An-
other example is the Task Abstraction view. The Task Abstraction
view utilizes filled-in shapes to represent the three step process of
the science and navigation chain of tasks; however the shapes do
not indicate when or who has executed the respective task. To verify
the abstraction, users can individually click on a shape and see the
particular task being highlighted in the timeline visualization or
automatically highlight the entire chain of tasks as shown in Fig. 4.
Fig. 7 shows the average number of clicks users used to either
highlight and toggle throughout the user study’s three tasks. In
the first task, 8 of 12 users used the toggle interaction to validate
their understanding of the DWC’s visual encoding (Fig. 6). As P4
explains: “The reason why I’ve been [toggling] is because I’m not
sure right now whether I’'m seeing the similarity or differences (in
the Detail View). The way I can check that is by looking at the

(2]
X 4 .
2 variable
Os
5 Task1
* 2 . Task2

- 4 . Task3
o

>
Z, |

Highlight Toggle
Interaction

Figure 7: Summary of participants’ average number of clicks for two
interactions. Participants’ average number of clicks decreases over
the study. The average for the toggle interaction in the third task is 0.

color of [Agent 1’s ego view of battery level], and toggling the
[diagonal lines] to confirm what I’'m seeing.” By the second task,
only 3 users continued to use the toggle interaction to validate their
understanding, and O users used the toggle interaction by the third
task. As P6 explains, “At first, I [toggled] because I wanted to see
the whole picture. But once I got used to the system, I don’t need to
verify. I know from here it’s going to show the same thing so once
you get used to it, it’s not necessary.”

A similar pattern of use was observed when users were asked
whether agents have completed their science objectives. During the
first task, 7 out of 12 users used the chain of task highlighting inter-
action to confirm whether an agent’s science task abstraction was
accurately reflected in the timeline visualization. By the third task,
only 3 used the interaction, while the rest used the Task Abstraction
exclusively. P8 commented: “It took me a while to really (pause)
trust that the little [shapes] were fully representative (of the timeline
visualization). I just wanted to double-check that’s the right answer.”

6.2.3 What and how are not enough: expert users need to
know why

While participants shared how MOSAIC Viewer successfully ex-
plains what the agents are doing and provide insight to some anoma-
lous behaviors, expert operators wanted even more detail than the
system provided. P6 provides a representative quote:

Usually, people using [the system] not only want to see
how it’s scheduled. I think [answering] how [the tasks]
are scheduled, the visualizations are doing that beauti-
fully. But there’s some underlying optimization going on
where the objective function is trying to maximize some-
thing...As a human operating a system, one of the things
we always want to do is verification. So my computer is
telling me this [solution] is the best. Is it really the best?
Can I check the sanity of the solution?

Similarly, 10 participants indicated they would like to know more
about the reasoning behind the scheduling optimization with com-
ments such as, “I feel like 7 and [base station] should be doing better
than that and I wonder why they’re not”, “I want to know why [Agent
5’s science task] was transferred to 4. Why not to 0 or 2?7, “Why are
there blank spaces in the timeline?”. During the in-depth interviews,
participants commented that they would like to see explanations
behind the scheduler’s decisions. For example, when an agent’s task
is delegated to another agent, P6 and P10 explain they would want
to see the low-level details, such as real-time CPU load, of the two
agents in order to understand the scheduling optimization.

6.2.4 Different sets of assumptions affect sensemaking

Despite an unbounded training period, participants who are not
familiar with MOSAIC’s specific logistics displayed behavior where
they interpreted data differently. We note two specific cases.

P7 and P9, two non-core MOSAIC participants, incorrectly an-
swered “no” for all three tasks when asked if the agents accom-
plished their navigation task (Q3). In their think-aloud process, both
mentioned the squares that represent the base station’s navigation
chain of task in the Task Abstraction are not filled in, indicating that
the base station failed to accomplish its navigation tasks. However,

as explained in Sect. 2.2, the base station is a special agent that does
not need to accomplish the mandatory navigation task as its purpose
is to help other agents with its fast computation power.

A similar pattern of mental model mismatch occurred with P4.
During the first task, P4 provided an incorrect answer to the question
related to the agents’ science tasks (Q2). In their think-aloud process,
P4 observed how Agent 3 accomplished its science chain of task
with the chain of task highlighting and stated the answer to Q2 is
“yes”. However, according to the Task Abstraction in Fig. 2, Agent
5 did not accomplish its science task. From the exit interview, P4
elaborated the reasoning behind their answer is based on the idea of
how “the agents are working together in tandem” where if one agent
accomplished its science chain of tasks, other agents did as well.

6.3 Case Studies

Evaluate System Performance. Upon launching the system, the
operator sees the Main View and DWC side-by-side. The Summary
View (Fig. 2a) does not display a synchronization warning and
DWC also does not show any deltas. The operator concludes the
agents’ worldviews are in sync and moves on to assess the system’s
performance (i.e., how many tasks are being performed, and by
whom) as part of their next goal (Table 3).

The operator looks at the Task Abstraction (Fig. 2d) to obtain
a high-level overview of the system’s performance. The filled-in
squares in the “NAV” column indicate agents have accomplished
their mandatory navigation task. The “SCI” column shows Agent 3,
with its three filled-in triangles, is the only agent that fully accom-
plished its science chain of tasks. However, the Science Objectives
(Fig. 2a) and the graph (Fig. 2c) show there are a total of four eligible
agents (Agents 1, 3, 5, and 6) that can accomplish science tasks.

The operator engages with the timeline (Fig. 2e) and scatterplot
(Fig. 2b) to seek for the low-level details that explain why the other
three agents failed to accomplish their science tasks. Highlighting
Agent 5’s partial science chain of tasks (Fig. 2e colored in pink), the
operator sees Agent 5 relocated the second science task to Agent
4. From the graph, the shortest path to send the scientific data from
Agent 4 to the base station is through Agent 8 or Agent 1. However,
Agent 4 has a weak communication link to both agents and is unable
to relay the data within the time gap from r = 23 to # = 27. Next,
the scatterplot shows that Agent 1’s and Agent 6’s battery level is
50%, indicating the computation time needed for their tasks will
take longer compared to other agents (e.g., Agent 1 takes twice as
long as Agent 0 to accomplish its second navigation task). Evidently,
Agent 1 and Agent 6 (colored in orange and turquoise, respectively)
did not accomplish any science tasks as both needed more time to
accomplish their mandatory navigation tasks.

Plan for Corrective Action. With the same “out of sync” sce-
nario from the user study, this case study reflects how operators can
plan for corrective action (i.e., determine who is out of sync and
reason why the desynchronization occurred) with MOSAIC Viewer.

Launching the system, the operator sees the Main View and DWC
side-by-side. The Main View signals a desynchronization warning in
the Summary Overview, and DWC (Fig. 4) displays deltas across all
three panels. The deltas specifically in the Communication Network
Panel (Fig. 8b) show two distinct sets. Highlighting rows 0, 6, 7,
8, ST in the Communication Network panel emphasizes the visual-
ization’s white space, revealing a bipartition in the communication
network as Agents 0, 6, 7, 8, ST are out of sync with Agents 1-5,
and conversely Agents 1-5 are out of sync with Agent 7 and 8. The
deltas in the other two panels have the same visual pattern and the
same set of agents (Agents 0, 6, 7, 8, and ST) are out of sync.

The pattern revealed by the DWC is also displayed in the graph
in the Main View (Fig. 8a): the same grouping of agents in DWC
is reflected within the two distinct clusters of the graph. The weak
communication bandwidth between the two clusters (indicated by
black arrows) further supports the hypothesis of a bipartite graph.

7 Setl

7

02

}Setz

Figure 8: (a) Graph and (b) Communication Network Panel. In (b), operator highlights row 0, 6, 7, 8, ST and identifies a visual pattern of how Set 1
is the complement set of Set 2. They hypothesize there’s a network bipartition. The immediate edges of these selected agents are highlighted in
(a) and the same group of agents are separated. The weak communication links (indicated by black arrows) further support this hypothesis.

For instance, the bandwidth value between Agent 4 and 7 is 1, a
weak value where agents would not be able to send data across the
network and update each others’ worldviews, causing the bipartition.

7 DISCUSSION

In this section, we reflect upon the findings of this work, and consider
both its extension, and its limitations.

Limitations in Visual Scalability. While the scale of ten agents
in our work aligns with current and proposed space exploration
concepts [8, 19, 20, 45] within the next 10 years, the current sys-
tem design might struggle to achieve the same levels of legibility
and low cognitive load with swarm robotics [48] mission concepts
that include hundreds of agents. Edge bundling [24] and layout
algorithms [41] are promising directions to improve dense graph
legibility and transparency [13], and jitter [71] can improve dense
scatterplot legibility. However, critically, in swarm robotics applica-
tions, agents are rarely endowed with a global worldview—rather,
each agent typically relies on much simpler scheduling schemes and
reacts based on its own state and immediate neighbors’. Accordingly,
we expect that further research will be required to capture the qual-
itatively different nature of the underlying problem of debugging
autonomous swarms’ behaviors.

Foreground scheduler logistics to achieve generalizability. In
our findings, we observed differences between how core MOSAIC
and non-core researchers interpreted the same visual marks on the
display. In the example reported in Sect 6.2.4, the Task Abstrac-
tion shows unfilled squares for the base station. Some non-core
team members interpreted that not all robots have completed their
navigation tasks when seeing unfilled squares for the base station.
However, core team members saw the same marks, and, knowing
that the base station does not need to complete the navigation task,
made the correct interpretation that all mandatory navigation tasks
were completed. Reflecting on the systems’ visual encoding, we re-
alize this confusion could have been avoided by adding an additional
glyph that distinguishes the base station from other agents.

This split in our test population reveals an interesting artifact of
our design process. Though we spent nearly a year on iteratively
designing, we never observed this problem in our user testing until
we included users outside of the core MOSAIC team. We reflect
that while both groups contain full-time MRS robotics researchers,
the core group is more deeply steeped in the architecture and algo-
rithms that drive the MOSAIC scheduler. To design a more general
MRS application that would work across any number of scheduling
algorithms, this would require to dive deep into the mechanics of
scheduling algorithms. A general system would need to visualize
not only the various states of the worldviews, but also many of the
underlying mechanisms through which the scheduling system oper-
ates. With this approach, designers could be more likely to create a
system that functions independently of the background of its users.

Move Beyond the Debugging Use Case. This work focuses
more explicitly on explaining what the autonomy has decided. Given
this success of this work, participants also expressed some desire
to understand, as P7 states, “different perspectives of the same

code”, that extends to understanding why the autonomy made the
decisions it did in non-error cases. This points towards supporting
the task of scheduling algorithm design, such as adding a “what-if”
mode [76], to help roboticists gain insight into tasks that include how
different algorithm hyperparameters affect the search of a very large
space. This creates an opportunity to work in algorithm visualization
[28,64], as well as large decisions trees visualization [67,70]

Extend to other Multi-Robot Systems. While this system was
designed to support users of the MOSAIC scheduler, it also repre-
sents an interesting challenge to extend the application to other MRS
systems that use different underlying algorithms and for different
contexts of use. In one exit interview, for example, P5 observed that
MOSAIC Viewer might also support agent navigation discrepancies
in support of DARPA’s Subterranean Challenge (SubT) [15]. P5
reflected on ways in which the contexts share many commonalities
that could help the systems achieve more generalizability, noting
“What you’re visualizing is at the core of these multi-robot problems.
They are connected by some network infrastructure, they’re sharing
information in order to come to a decision about what to do. So we
want to visualize what were the states at a specific time, what were
they doing, what were they planning on doing, and how they were
connected with each other.” But they also noted other system dif-
ferences that might not make the contexts topologically equivalent,
noting “[SubT’s] task network is a bit larger [than MOSAIC’s] and
not as straightforward as 1, 2, 3. You roll back and there’s loops. So
it’s harder to just lay it out sequentially like [MOSAIC’s]”.

8 CONCLUSION

We present MOSAIC Viewer, a visual analytics system that helps
users make sense of robots’ autonomous scheduling decisions and
pinpoint the cause of desynchronized worldviews in a multi-robot
system. To compare worldviews, we draw inspiration from the diff
algorithm to visually emphasize the differences, while aggregat-
ing the similarities. This approach allows users to quickly detect
the differences and similarities of all the robots’ worldviews. The
interlinked views help users not only collate and fuse pieces of in-
formation from each view in order to conduct a root cause analysis
of the desynchronized worldviews, but also understand the behav-
ior of the system at a societal and individual level. Our qualitative
user study with domain experts at the NASA JPL characterizes and
elaborates the usefulness and eftectiveness of MOSAIC Viewer.

9 ACKNOWLEDGEMENT

The development of MOSAIC Viewer was enabled by the
JPL/Caltech/ArtCenter data visualization program. We would like
to thank Santiago Lombeyda, Hillary Mushkin, Maggie Hendrie,
Alessandra Fleck, and Sarah Strickler for their feedback and contri-
bution on the earlier prototypes of MOSAIC Viewer. Also, special
thanks to the MOSAIC team! This research is sponsored in part by
the U.S. National Science Foundation through grant IIS-1741536.
The research was carried out at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National
Aeronautics and Space Administration (S0NMO0018D0004).

REFERENCES

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

D. Altheide, M. Coyle, K. DeVriese, and C. Schneider. Emergent
qualitative document analysis. Handbook of Emergent Methods, pp.
127-151, 2008.

B. Annable, D. Budden, and A. Mendes. Nubugger: A visual real-time
robot debugging system. In Proc. RoboCup, pp. 544-551. Springer,
2013.

T. Arai, E. Pagello, L. E. Parker, et al. Advances in multi-robot systems.
IEEE Transactions on Robotics and Automation, 18(5):655-661, 2002.
B. Argrow, D. Lawrence, and E. Rasmussen. UAV systems for sensor
dispersal, telemetry, and visualization in hazardous environments. In
Proc. AIAA Aerospace Sciences Meeting and Exhibit, p. 1237, 2005.
B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete,
and T. Grabowski. Small MultiPiles: Piling time to explore temporal
patterns in dynamic networks. Computer Graphics Forum, 34(3):31-40,
2015.

D. J. Barnes, M. T. Russell, and M. C. Wheadon. Developing and adapt-
ing UNIX tools for workstations. In EUUG Conference Proceedings,
pp. 321-333, 1988.

J. L. Baxter, E. Burke, J. M. Garibaldi, and M. Norman. Multi-robot
search and rescue: A potential field based approach. In Autonomous
Robots and Agents, pp. 9-16. Springer, 2007.

S. S. Board, N. R. Council, et al. Vision and voyages for planetary
science in the decade 2013-2022. National Academies Press, 2012.
M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301-2309, 2011.

B. Burmeister, A. Haddadi, and G. Matylis. Application of multi-
agent systems in traffic and transportation. IEE Proceedings - Software
Engineering, 144(1):51-60, 1997.

K. A. Cook and J. J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical report, Pacific
Northwest National Lab., Richland, WA (United States), 2005.

M. Cummings and P. Mitchell. Managing multiple UAVs through a
timeline display. In Proc. AIAA Info Tech, p. 7060. 2005.

T. N. Dang, L. Wilkinson, and A. Anand. Stacking graphic elements to
avoid over-plotting. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1044-1052, 2010.

M. De Rosa, J. Campbell, P. Pillai, S. Goldstein, P. Lee, and T. Mowry.
Distributed watchpoints: Debugging large multi-robot systems. In
Proc. ICRA, pp. 3723-3729. IEEE, 2007.

Defense Advanced Research Projects Agency. DARPA Subterranean
(SubT) Challenge. URL: https://www.darpa.mil/program/
darpa-subterranean-challenge.

N. Elmqvist and J. S. Yi. Patterns for visualization evaluation. Infor-
mation Visualization, 14(3):250-269, 2015.

A. Emslie, R. Lagace, and P. Strong. Theory of the propagation of uhf
radio waves in coal mine tunnels. /EEE Transactions on Antennas and
Propagation, 23(2):192-205, 1975.

E. E. Entin and D. Serfaty. Adaptive team coordination. Human factors,
41(2):312-325, 1999.

eoPortal. CYGNSS (Cyclone Global Navigation Satellite Sys-
tem). URL: https://directory.eoportal.org/web/eoportal/
satellite-missions/c-missions/cygnss.

eoPortal. OPAL (Orbiting Picosatellite Automatic Launcher).
URL: https://directory.eoportal.org/web/eoportal/
satellite-missions/o/opal.

J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A visual
interface for multivariate temporal data: Finding patterns of events
across multiple histories. In Proc. VAST, pp. 167-174. IEEE, 2006.

J. Figueiredo, N. Lau, and A. Pereira. Multi-agent debugging and
monitoring framework. IFAC Proceedings Volumes, 39(20):114-120,
2006.

J. Gancet, E. Motard, A. Naghsh, C. Roast, M. M. Arancon, and
L. Marques. User interfaces for human robot interactions with a swarm
of robots in support to firefighters. In Proc. ICRA, pp. 2846-2851.
IEEE, 2010.

E.R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglom-

erative edge bundling for visualizing large graphs. In Proc. PacificVis,
pp. 187-194. IEEE, 2011.

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

H. Garcia-Molina, F. Germano, and W. H. Kohler. Debugging a dis-
tributed computing system. /[EEE Transactions on Software Engineer-
ing, (2):210-219, 1984.

M. Gleicher, D. Albers, R. Walker, 1. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289-309, 2011.

R. Gove, J. Saxe, S. Gold, A. Long, and G. Bergamo. SEEM: a scalable
visualization for comparing multiple large sets of attributes for malware
analysis. In Proc. VizSec, pp. 72-79. IEEE, 2014.

S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in CS
education: Comparing levels of student engagement. In Proc. SoftVis,
pp- 87-94. ACM, 2003.

J. Halloran, E. Hornecker, G. Fitzpatrick, M. Weal, D. Millard,
D. Michaelides, D. Cruickshank, and D. De Roure. Unfolding un-
derstandings: Co-designing ubicomp in situ, over time. In Proc. DIS,
pp. 109-118. ACM, 2006.

J.'Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549-587, 1990.
M. Harrower and C. A. Brewer. ColorBrewer.org: An online tool for
selecting colour schemes for maps. Cartographic Journal, 40(1):27-37,
2003.

J. H. Holland. Emergence: From chaos to order. OUP Oxford, 2000.
K. Holtzblatt and H. Beyer. Contextual design: Defining customer-
centered systems. Elsevier, 1997.

C. M. Humphrey, S. M. Gordon, and J. A. Adams. Visualization of
multiple robots during team activities. In Proc. HFES, vol. 50, pp.
651-655. SAGE Publications, 2006.

J. W. Hunt and M. D. Macllroy. An algorithm for differential file
comparison. Bell Laboratories Murray Hill, 1976.

J. Jin, R. Sanchez, R. T. Maheswaran, and P. Szekely. Vizscript: On the
creation of efficient visualizations for understanding complex multi-
agent systems. In Proc. IUI, pp. 40-49. ACM, 2008.

J. Jo, J. Huh, J. Park, B. Kim, and J. Seo. LiveGantt: Interactively
visualizing a large manufacturing schedule. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2329-2338, 2014.

G. Kardas, M. Challenger, S. Yildirim, and A. Yamuc. Design and im-
plementation of a multiagent stock trading system. Software: Practice
and Experience, 42(10):1247-1273, 2012.

J. T. Karras, C. L. Fuller, K. C. Carpenter, A. Buscicchio, D. McKeeby,
C.J. Norman, C. E. Parcheta, I. Davydycheyv, and R. S. Fearing. Pop-up
mars rover with textile-enhanced rigid-flex PCB body. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pp.
5459-5466. IEEE, 2017.

J. Kasper, J. Lazio, A. Romero-Wolf, J. Lux, and T. Neilsen. The sun
radio interferometer space experiment (sunrise) mission concept. In
2019 IEEE Aerospace Conference, pp. 1-11. IEEE, 2019.

S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. Hola: Human-like
orthogonal network layout. IEEE Transactions on Visualization and
Computer Graphics, 22(1):349-358, 2015.

H. Kunsei, K. S. Bialkowski, M. S. Alam, and A. M. Abbosh. Improved
communications in underground mines using reconfigurable antennas.
IEEE Transactions on Antennas and Propagation, 66(12):7505-7510,
2018.

S. Liu, D. Maljovec, B. Wang, P-T. Bremer, and V. Pascucci. Visu-
alizing high-dimensional data: Advances in the past decade. IEEE
Transactions on Visualization and Computer Graphics, 23(3):1249—
1268, 2016.

Y. Luo, K. Liu, and D. N. Davis. A multi-agent decision support system
for stock trading. IEEE Network, 16(1):20-27, 2002.

A. J. Mannucci, J. Dickson, C. Duncan, and K. Hurst. GNSS geospace
constellation (GGC): A CubeSat space weather mission concept. Tech-
nical report, Jet Propulsion Laboratory, California Institute of Technol-
ogy, 2010.

F. Michel, J. Ferber, and A. Drogoul. Multi-agent systems and simula-
tion: A survey from the agent commu-nity’s perspective. In Multi-Agent
Systems, pp. 17-66. CRC Press, 2018.

K. Nagatani, Y. Okada, N. Tokunaga, S. Kiribayashi, K. Yoshida,
K. Ohno, E. Takeuchi, S. Tadokoro, H. Akiyama, I. Noda, et al.
Multirobot exploration for search and rescue missions: A report on
map building in RoboCupRescue 2009. Journal of Field Robotics,

https://www.darpa.mil/program/darpa-subterranean-challenge
https://www.darpa.mil/program/darpa-subterranean-challenge
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cygnss
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cygnss
https://directory.eoportal.org/web/eoportal/satellite-missions/o/opal
https://directory.eoportal.org/web/eoportal/satellite-missions/o/opal

[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63

[tr?

28(3):373-387, 2011.

I. Navarro and F. Matia. An introduction to swarm robotics.
robotics, 2013.

D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C. Collis. Visualising
and debugging distributed multi-agent systems. In Proc. AAMAS, pp.
326-333, 1999.

C. Niederer, H. Stitz, R. Hourieh, F. Grassinger, W. Aigner, and
M. Streit. TACO: visualizing changes in tables over time. [EEE
Transactions on Visualization and Computer Graphics, 24(1):677-686,
2017.

E. Osawa, H. Kitano, M. Asada, Y. Kuniyoshi, and I. Noda. RoboCup:
the robot world cup initiative. In Proc. ICMAS, pp. 9-13, 1996.

L. E. Parker. Distributed intelligence: Overview of the field and its
application in multi-robot systems. In Proc. AAAI Fall Symposium:
Regarding the Intelligence in Distributed Intelligent Systems, pp. 1-6,
2007.

C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, et al. Argos:
a modular, parallel, multi-engine simulator for multi-robot systems.
Swarm intelligence, 6(4):271-295, 2012.

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey.
Human-Computer Interaction. Addison-Wesley Longman Ltd., 1994.
M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: An open-source robot operating
system. In Proc. ICRA Workshop on Open Source Software, vol. 3, p. 5.
Kobe, Japan, 2009.

A. Rahmani, S. Bandyopadhyay, F. Rossi, J.-P. de la Croix, J. V. Hook,
and M. T. Wolf. Space vehicle swarm exploration missions: A study
of key enabling technologies and gaps. In Proc. IAC, 2019.

M. Rettig. Prototyping for tiny fingers. Communications of the ACM,
37(4):21-27, 1994.

F. Rossi, R. Zhang, Y. Hindy, and M. Pavone. Routing autonomous
vehicles in congested transportation networks: Structural properties
and coordination algorithms. Autonomous Robots, 42(7):1427-1442,
2018.

H. A. Ruff and G. L. Calhoun. Human supervision of multiple au-
tonomous vehicles. Technical report, Air Force Research Lab Wright-
Patterson AFB OH Human Effectiveness Directorate, 2013.

R. Sadana, T. Major, A. Dove, and J. Stasko. Onset: A visualiza-
tion technique for large-scale binary set data. IEEE transactions on
visualization and computer graphics, 20(12):1993-2002, 2014.

M. Schroeder and P. Noy. Multi-agent visualisation based on multivari-
ate data. In Proc. AAMAS, pp. 85-91, 2001.

C. Seah, M. Sierhuis, and W. J. Clancey. Multi-agent modeling and
simulation approach for design and analysis of mer mission operations.
2005.

M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE Transactions on

Isrn

[64]

[65]

[66]

[67]
[68]

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

Visualization and Computer Graphics, 18(12):2431-2440, 2012.

C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart,
S. Ponce, and S. H. Edwards. Algorithm visualization: The state of the
field. ACM Transactions on Computing Education, 10(3):1-22, 2010.
R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
and H. Younes. Coordination for multi-robot exploration and mapping.
In Proc. AAAI/IAAL pp. 852-858, 2000.

H. Song, B. Lee, B. H. Kim, and J. Seo. DiffMatrix: Matrix-based in-
teractive visualization for comparing temporal trends. In Proc. EuroVis
(Short Papers), 2012,

P. Szekely, R. Maheswaran, C. M. Rogers, and R. Sanchez. Scheduling
the activities of distributed teams. 2008.

P. Szekely, C. M. Rogers, and M. Frank. Interfaces for understanding
multi-agent behavior. In Proc. IUI, pp. 161-166. ACM, 2001.

A. Tanoto, J. L. Du, T. Kaulmann, and U. Witkowski. MPEG-4-based
interactive visualization as an analysis tool for experiments in robotics.
In Proc. MSV, pp. 186-192, 2006.

G. Taylor, R. M. Jones, M. Goldstein, R. Frederiksen, and R. E. Wray.
VISTA: A generic toolkit for visualizing agent behavior. In Proc. CGF,
pp- 29-40, 2002.

M. Trutschl, G. Grinstein, and U. Cvek. Intelligently resolving point

occlusion. In Proc. InfoVis, pp. 131-136. IEEE, 2003.
T. S. Tullis. Predicting the usability of alphanumeric displays. PhD

thesis, 1984.

M. H. Van Liedekerke and N. M. Avouris. Debugging multi-agent
systems. Information and Software Technology, 37(2):103-112, 1995.
J. Vander Hook, W. Seto, V. Nguyen, Z. Hasnain, L. Gallagher,
T. Halpin-Chan, V. Varahamurthy, and M. Angulo. Autonomous
swarms of high speed maneuvering surface vessels for the central
test evaluation improvement program. In Unmanned Systems Technol-
ogy XXI, vol. 11021, p. 110210M. International Society for Optics and
Photonics, 2019.

J. Vander Hook, T. Vaquero, F. Rossi, M. Troesch, M. S. Net, J. School-
craft, J.-P. de la Croix, and S. Chien. Mars on-site shared analytics
information and computing. In Proc. ICAPS, vol. 29, pp. 707-715,
2019.

J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and
J. Wilson. The what-if tool: Interactive probing of machine learning
models. IEEE transactions on visualization and computer graphics,
26(1):56-65, 2019.

K. Wongsuphasawat, J. A. Guerra Gémez, C. Plaisant, T. D. Wang,
M. Taieb-Maimon, and B. Shneiderman. LifeFlow: visualizing an
overview of event sequences. In Proc. CHI, pp. 1747-1756. ACM,
2011.

A. Yamashita, T. Arai, J. Ota, and H. Asama. Motion planning of
multiple mobile robots for cooperative manipulation and transportation.
IEEE Transactions on Robotics and Automation, 19(2):223-237, 2003.

	Introduction
	Background
	Autonomous Multi-Robot Systems
	MOSAIC Distributed Scheduling

	Related Work
	Scheduling and Timeline Views in Robotics
	Worldview Debugging

	Formative Study
	Approach
	Findings
	Design Requirements

	Application
	Main View
	Differential WorldView Comparison
	User Interactions
	System Architecture & Implementation

	System Evaluation
	User Study
	Results
	Speed and interactivity streamline analyses
	Trust for summary displays grew with experience
	What and how are not enough: expert users need to know why
	Different sets of assumptions affect sensemaking

	Case Studies

	Discussion
	Conclusion
	Acknowledgement

